首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4744篇
  免费   297篇
  国内免费   234篇
  2023年   89篇
  2022年   160篇
  2021年   254篇
  2020年   273篇
  2019年   225篇
  2018年   227篇
  2017年   184篇
  2016年   202篇
  2015年   209篇
  2014年   323篇
  2013年   396篇
  2012年   234篇
  2011年   327篇
  2010年   226篇
  2009年   218篇
  2008年   244篇
  2007年   251篇
  2006年   210篇
  2005年   134篇
  2004年   141篇
  2003年   103篇
  2002年   63篇
  2001年   63篇
  2000年   47篇
  1999年   42篇
  1998年   39篇
  1997年   37篇
  1996年   29篇
  1995年   33篇
  1994年   30篇
  1993年   27篇
  1992年   18篇
  1991年   27篇
  1990年   14篇
  1989年   16篇
  1988年   18篇
  1987年   13篇
  1986年   15篇
  1985年   15篇
  1984年   12篇
  1983年   3篇
  1982年   14篇
  1981年   13篇
  1980年   11篇
  1979年   13篇
  1978年   4篇
  1976年   9篇
  1975年   5篇
  1974年   4篇
  1973年   3篇
排序方式: 共有5275条查询结果,搜索用时 15 毫秒
11.
MPV17 is an integral inner mitochondrial membrane protein, whose loss-of-function is linked to the hepatocerebral form of the mitochondrial-DNA-depletion syndrome, leading to a tissue-specific reduction of mitochondrial DNA and organ failure in infants. Several disease-causing mutations in MPV17 have been identified and earlier studies with reconstituted protein suggest that MPV17 forms a high conductivity channel in the membrane. However, the molecular and structural basis of the MPV17 functionality remain only poorly understood. In order to make MPV17 accessible to high-resolution structural studies, we here present an efficient protocol for its high-level production in E. coli and refolding into detergent micelles. Using biophysical and NMR methods, we show that refolded MPV17 in detergent micelles adopts a compact structure consisting of six membrane-embedded α-helices. Furthermore, we demonstrate that MPV17 forms oligomers in a lipid bilayer that are further stabilized by disulfide-bridges. In line with these findings, MPV17 could only be inserted into lipid nanodiscs of 8–12 nm in diameter if intrinsic cysteines were either removed by mutagenesis or blocked by chemical modification. Using this nanodisc reconstitution approach, we could show that disease-linked mutations in MPV17 abolish its oligomerization properties in the membrane. These data suggest that, induced by oxidative stress, MPV17 can alter its oligomeric state from a properly folded monomer to a disulfide-stabilized oligomeric pore which might be required for the transport of metabolic DNA precursors into the mitochondrial matrix to compensate for the damage caused by reactive oxygen species.  相似文献   
12.
《Reproductive biology》2014,14(1):51-60
The overall acceptance of pig models for human biomedical studies is steadily growing. Results of rodent studies are usually confirmed in pigs before extrapolating them to humans. This applies particularly to gastrointestinal and metabolism research due to similarities between pig and human physiology. In this context, intrauterine growth retarded (IUGR) pig neonate can be regarded as a good model for the better understanding of the IUGR syndrome in humans. In pigs, the induction of IUGR syndrome may include maternal diet intervention, dexamethasone treatment or temporary reduction of blood supply. However, in pigs, like in humans, circa 8% of neonates develop IUGR syndrome spontaneously. Studies on the pig model have shown changes in gut structure, namely a reduced thickness of mucosa and muscle layers, and delayed kinetic of disappearance of vacuolated enterocytes were found in IUGR individuals in comparison with healthy ones. Functional changes include reduced dynamic of gut mucosa rebuilding, decreased activities of main brush border enzymes, and changes in the expression of proteins important for carbohydrate, amino acids, lipid, mineral and vitamin metabolism. Moreover, profiles of intestinal hormones are different in IUGR and non-IUGR piglets. It is suggested that supplementation of the mothers during the gestation and/or the IUGR offspring after birth can help in restoring the development of the gastrointestinal tract. The pig provides presumably the optimal animal model for humans to study gastrointestinal tract structure and function development in IUGR syndrome.  相似文献   
13.
14.
Determination of the ratios of natural stable isotopes (13C/12C and 15N/14N) in unfed Ixodes ricinus nymphs and adults, which, in their previous stage, fed on captive wild rodents (Apodemus sylvaticus and Myodes glareolus), wild birds (Parus major and Cyanistes caeruleus) or domestic ruminants (Ovis aries and Bos taurus), demonstrated that it is possible to identify each host category with confidence. First, the tick–blood spacing, which is the difference between values obtained from ticks and the blood of hosts that they had fed on in the previous stage, was consistent (152 spacings investigated from 15 host individuals in total). Second, potential confounding factors (tick age and sex) did not affect the discriminatory power of the isotope patterns, nor did different rearing conditions (room temperature vs. 4 °C) or the duration of development (maximum of 430 days). The findings that the tick–blood isotope spacings, across a diverse range of hosts, were similar and predictable, and that confounders had little or no effect on this, strongly support the usage of the isotope approach. Because each of the host categories has a different role in the population dynamics of I. ricinus and in tick‐borne pathogen ecology, the method described here has great potential for the clarification of tick and tick‐borne pathogen ecology in the field.  相似文献   
15.
16.
Genetically modified Saccharomyces cerevisiae strain (YPB-G) which secretes a bifunctional fusion protein that contains both Bacillus subtilis -amylase and Aspergillus awamori glucoamylase activities was used for the direct conversion of starch into ethanol. Starch was either supplied initially to different nutrient media or added instantaneously to the reactor at various discrete time instants (pulse feeding). Stoichiometric modeling was used to investigate the effects of initial substrate concentration and growth rate of the recombinant yeast culture on ethanol production. Reaction stoichiometries describing both the anabolism and catabolism of the microorganism were used as an input to flux balance analysis (FBA), the preferred metabolic modeling approach since the constructed stoichiometric network was underdetermined. Experiments for batch and fed-batch systems at different substrate concentrations were analyzed theoretically in terms of flux distributions using ethanol production rate as the maximization criteria. Calculated ethanol rates were in agreement with experimental measurements, suggesting that this recombinant microorganism is sufficiently evolved to optimize its ethanol production. The function of the main pathways of yeast metabolism (PPP, EMP, TCA) are discussed together with the node analyses of glucose-6-P and pyruvate branch points. Theoretical node analysis revealed that if the split ratio in G6P branch point is changed by genetic manipulations, the ethanol yield would be affected considerably.  相似文献   
17.
Astrocytes have long been considered as just providing trophic support for neurons in the central nervous system, but recently several studies have highlighted their importance in many functions such as neurotransmission, metabolite and electrolyte homeostasis, cell signaling, inflammation, and synapse modulation. Astrocytes are, in fact, part of a bidirectional crosstalk with neurons. Moreover, increasing evidence is stressing the emerging role of astrocyte dysfunction in the pathophysiology of neurological disorders, including neurodegenerative disease, stroke, epilepsy, migraine, and neuroinflammatory diseases.  相似文献   
18.
19.
Platelet activating factor (PAF), an endogenous bioactive phospholipid, has been documented as a pivotal mediator in the inflammatory cascade underlying the pathogenesis of many diseases including necrotizing enterocolitis. Much effort has been directed towards finding an effective in vivo inhibitor of PAF signaling. Here, we report that a small, highly stable, lysosomal lipid transport protein, the GM2 activator protein (GM2AP) is able to inhibit the inflammatory processes otherwise initiated by PAF in a rat model of necrotizing enterocolitis. Based on behavioral observations, gross anatomical observations at necropsy, histopathology and immunocytochemistry, the administration of recombinant GM2AP inhibits the devastating gastrointestinal necrosis resulting from the injection of rats with LPS and PAF. Recombinant GM2AP treatment not only markedly decrease tissue destruction, but also helped to maintain tight junction integrity at the gastrointestinal level as judged by contiguous Zonula Occludens-1 staining of the epithelial layer lining the crypts.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号